En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
математика
несмешанный идеал
[ai'diəl]
общая лексика
абсолютный
дивизор
идеал
идеальный
мысленный
нереальный
несобственный
теоретический
прилагательное
общая лексика
идеальный
отличный
совершенный
превосходный
воображаемый
абстрактный
мысленный
нереальный
неосуществимый
идеальный, совершенный
воображаемый, мысленный
философия
идеалистический
синоним
существительное
[ai'diəl]
общая лексика
идеал
верх совершенства
образец
философия
идеальное
совершенное
синоним
математика
максимальный фильтр
ультрафильтр
In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.
They are named for Francis Sowerby Macaulay (1916), who proved the unmixedness theorem for polynomial rings, and for Irvin Cohen (1946), who proved the unmixedness theorem for formal power series rings. All Cohen–Macaulay rings have the unmixedness property.
For Noetherian local rings, there is the following chain of inclusions.